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We study electron transport through a semiconductor quantum ring with one input and two output terminals
for an elastic scatterer present within one of the arms of the ring. We demonstrate that the scatterer not only
introduces asymmetry in the transfer probability to the two output leads but also reduces the visibility of the
Aharonov-Bohm conductance oscillations. This reduction occurs in spite of the phase coherence of the elastic
scattering and is due to interruption of the electron circulation around the ring by the potential defect. The
results are in qualitative agreement with a recent experiment by Strambini et al. �Phys. Rev. B 79, 195443
�2009��. We also indicate that the magnetic symmetry of the sum of conductance of both the output leads as
obtained in the experiment can be understood as resulting from the invariance of backscattering to the input
lead with respect to the magnetic field orientation.
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I. INTRODUCTION

Although studies of electron transport in semiconductor
rings have a long history,1,2 the interest in this field is sus-
tained by progress of experimental techniques. In particular,
transport through quantum rings containing a number of con-
fined electrons was realized within the last decade3,4 and
double concentric quantum rings were recently studied.5

Moreover, self-interference of electrons injected individually
into the quantum ring was observed with a time-resolved
technique.6 The Fermi-level wave functions were probed by
conductance measurements for the ring potential landscape
perturbed by a tip of atomic force microscope.7 The effect of
magnetic forces on quantum ring conductance was studied
experimentally in Ref. 8.

In presence of the magnetic forces the electron wave
function enters both arms of the quantum ring with an un-
equal amplitude.9 For two-terminal rings the preferential in-
jection of the electron wave function into one of the arms of
the ring leads to attenuation of the Aharonov-Bohm oscilla-
tion at high magnetic field.9 It was demonstrated10 that for
rings with three terminals at high field in addition to the
vanishing oscillation amplitude the magnetic forces produce
a distinct imbalance of the electron-transport probabilities to
the two output leads. Both the high-field reduction in the
oscillation amplitude and the imbalance in the conductance
of the two output leads were indeed found in the recent
experiment.8 However, the experimental data8 differ from the
theoretical results10 within the range of weak magnetic fields,
namely: �i� the measured conductance of one of the output
leads significantly exceeds the other near B=0 �Fig. 1 of Ref.
8� and �ii� already for low magnetic fields the experimental
Aharonov-Bohm conductance oscillations have a low ampli-
tude. The first feature suggests that the potential landscape
within the ring is asymmetric and the second was attributed8

to decoherence. The estimated8 coherence length is 320 nm,
which is surprisingly short—an order of magnitude shorter
than the estimate for the two-dimensional electron gas11 for
the temperature of 350 mK applied in the experiment.8 In the

present paper we indicate that the observed features of the
conductance can also be explained for purely coherent trans-
port as resulting from the elastic scattering effects which do
not randomize the phase but reduce the circulation of the
electron around the arms of the ring. We perform a system-
atic study of the electron transport in a three-terminal ring
containing a potential defect. We find that only a repulsive
and not an attractive scattering center may explain the con-
ductance features as seen in the experiment.

The sum of conductance of both the output leads turns
out8 to be an even function of the magnetic field, which is
reminiscent of the Onsager symmetry for two-terminal
devices.12 The sum of the transfer probabilities to the left Tl

and right Tr output leads T=Tl+Tr as found in the simulation
of symmetric rings10 is also an even function of B but for
evident kinetic reasons which no longer hold for asymmetric
rings. We demonstrate below that for the ring with a defect
the kinetics of the electron transfer and the electron trajec-
tory are very different for opposite magnetic field orienta-
tions and that the observed8 T�B�=T�−B� symmetry is due to
the invariance of the backscattering with respect to the ori-
entation of the B vector.

Multiterminal rings constitute basic elements for con-
struction of arrays, which are used in detection of the
Aharonov-Casher effect13 and are attractive for construction
of programmable quantum gates.14 The three-terminal quan-
tum rings were investigated in the context of the Kondo den-
sity of states.15 It was demonstrated that the spin-orbit cou-
pling effects in three-terminal rings can be used for
construction of electron-spin beam splitters.16

The current as carried by a steady electron flow at the
Fermi level can be determined from the Hamiltonian
eigenequation. However, for the purpose of the present study
we choose to employ a time-dependent approach providing a
clear picture of the electron trajectory which in the present
problem appears as quite complex. With the wave-packet
description of the electron motion one can approach the
time-independent monoenergetic limit arbitrarily close.
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II. THEORY

We consider a quantum ring of a radius 155 nm with three
symmetrically attached terminals—see Fig. 1�a�. The simu-
lations are based on the solution of the time-dependent
Schrödinger equation i� ��

�t =H�, for the Hamiltonian

H = �− i� � + eA�r��2/2m� �1�

in which we apply the Lorentz gauge A= �−By ,0 ,0� and the
GaAs effective mass m�=0.067m0. The problem is solved
with a technique previously used in Refs. 9, 10, and 17 in
which the wave function is expanded in a basis

��x,y,t� = �
j

cj�t�f j�x,y� �2�

of Gaussian functions f j localized around centers �Xj ,Y j�,

f j�x,y� = C exp�−
1

2
m��0��x − Xj�2 + �y − Y j�2�

+
ieB

2�
�x − Xj��y + Y j�� , �3�

where C is the normalization constant, �0 determines the
localization of the basis functions, and the imaginary term in
the exponent introduces the magnetic translation phase shift
that guarantees the gauge invariance, i.e., the equivalence of
all the applied centers in external magnetic field.

The applied choice of centers is shown by the dots in Fig.
1�a�. The centers are spaced by 22 nm along the leads which
is close enough to allow for a smooth electron flow along the
channel provided that the wave vector is lower than 0.15/nm.
The electron wave function is confined in the direction per-
pendicular to the axis of the leads and the channel width can
be estimated as w=4�� /m��0. The present modeling of the
leads as a chain of functions �Eq. �3�� limits the simulation to
the lowest subband.

Hamiltonian �1� does not explicitly contain any confine-
ment potential. In the present model the electron confinement
results from the localization of the Gaussian functions �Eq.
�3��. Nevertheless, one can try to extract an effective con-
finement potential present within the model by considering
the Hamiltonian eigenstates obtained in basis �Eq. �2��. For
that purpose we take the eigenequation H�n=En�n and plug
expansion �Eq. �2�� for the eigenstate �n. Subsequently, the
weak form of the eigenequation is obtained by its projection
on the basis elements �Eq. �3��, which produces the general-
ized eigenvalue problem Hcn=EnScn, where H and S are the
Hamiltonian and overlap matrices with analytically inte-
grable elements Hlj = 	f l
H
f j� and Slj = 	f l 
 f j�, respectively.
The effective potential in a point �x ,y� is then estimated by

V�x,y� =
�En − �− i� � + eA�2/2m���n�x,y�

�n�x,y�
. �4�

The effective potential is plotted in Fig. 1�a� for ��0
=2.9 meV with the contour plot. Additionally a cross section
of Fig. 1�a� calculated along the y=−600 nm line is plotted
in Fig. 1�b� with the solid line. The dots in Fig. 1�b� show the
harmonic-oscillator confinement potential m��0

2x2 /2. We can
see that the effective confinement potential is consistent with
the nominal value of �0 applied in the Gaussian basis �Eq.
�3��. In Fig. 1�a� we marked the channel region in green. The
green area in the figure was determined as the one in which
the sum of the Gaussian basis functions exceeds 10% of its
maximum value, which well agrees with the value of the
channel width w=79.2 nm obtained for ��0=2.9 meV.

The junctions of the wire to the ring allow for formation
of bound-electron states. We find three nearly degenerate
bound states—a single bound state for a single junction—
consistent with the known property of connections in the T
wires.18 The binding energy is equal to 0.1 meV and the
wave function of the lowest-energy bound state is plotted
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FIG. 1. �Color online� �a� The model of the three-terminal quan-
tum ring. The dots indicate the positions of the centers of the Gauss-
ian basis �Eq. �3��. The shaded �green� area shows the estimated
confinement region accessible to the traveling electron �see text� for
the width of the channel equal to w=79.2 nm. The effective con-
finement potential is plotted with the blue levels �the lowest level
corresponds to 10 meV and the next are spaced by 40 meV�. The
color scale is given in meV. �b� Harmonic oscillator potential �dots�
for ��0=2.9 meV and the effective potential �solid line� calculated
along y=−600 nm line of panel �a�. �c� The thick curves show the
boundaries of the confinement region and the contour plot shows
the ground-state wave function bound at the junction of the ring to
the leads.

B. SZAFRAN AND M. R. PONIEDZIAŁEK PHYSICAL REVIEW B 80, 155334 �2009�

155334-2



in Fig. 1�c�. For the defect potential we use Vd�x ,y�
=W exp�−��x−Xc�2+ �y−Yc�2� /Rd

2
, where �Xc ,Yc� are the
coordinates of the center of the defect, Rd=28 nm is its ra-
dius, and W its height/depth.

As the initial condition for our calculation we take a
Gaussian wave function entirely localized in the input lead
�the one below the ring with axis x=0� localized in the di-
rection perpendicular to the axis as the basis elements �Eq.
�3�� but with a larger spread along the lead

��r,t = 0� = f j�x,y�exp�+
1

2
m��0�y − Y j�2

−
�k2

4
�y − Y j�2�exp�iqy� , �5�

where the last term in Eq. �5� is introduced to push the elec-
tron in the direction of the ring with an average momentum
�q. For the applied gauge the kinetic and canonical momen-
tum in the y direction are identical and the y component of
the initial probability density current integrated over the
channel is equal to �q /m�. The Fourier transform of the ini-

tial condition along the axis of the lead is �̃�k�
=�� /2�k exp�−�q−k�2 /�k2� and �k is interpreted as the
dispersion of the packet in the wave-vector space. The initial
condition �5� is projected onto the basis �Eq. �2�� and the rest
of calculation amounts in determining the coefficients cj�t� in
subsequent moments in time. We use the matrix version of
the Askar-Cakmak scheme9,19 in form of a system of linear
equations for c�t+dt�,

Sc�t + dt� = Sc�t − dt� −
2idt

�
Hc�t� . �6�

We use dt=0.01 ps. Reduction in the time step below this
value does not change the results.

In the present approach the transfer probabilities Tl and Tr
are determined by the parts of the packet which are trans-
ferred to the leads before the end of the simulation. The
simulation is terminated when the electron packet completely
leaves the ring. We consider the ring as empty when it does
not contain more than 0.001% of the electron charge. Gen-
erally, in the time-dependent calculations the transferred and
back-scattered wave packets return to the ring after reflection
from the ends of the channels unless absorbing20 or
transparent21 boundary conditions are used. Application of
open boundary conditions is crucial for approaches using
finite difference techniques.7,22 The present work could be
performed without any open boundary conditions since in
the present approach one can apply leads of a length which is
in practice arbitrarily large. A decomposition of the S matrix
into a product of lower- and upper-triangular matrices for the
system of Eq. �6� is performed before the time stepping. With
the decomposed overlap matrix the numerical cost of each
time step scales linearly with the number of centers. For the
present calculation we use in total 5000 Gaussian functions
�Eq. �3�� with the leads as long as 30 �m each.

In strictly one-dimensional modeling of quantum rings
with the scattering matrix formalism1 the ring and the leads
are treated as separate objects with the coupling strength de-

scribed by an appropriate parameter. The coupling strength is
responsible for the time spent by the electron within the ring
and the sharpness of the transfer probability extrema in func-
tion of the wave vector. In the present two-dimensional
model the ring and the leads are modeled as a single object
and the ring is essentially open. Nevertheless the junctions of
the ring to the leads act like small scattering cavities.23 In
this paper the junctions are modeled as right-angle connec-
tions. Smooth junctions—binding more than a single elec-
tron state—were recently studied in Ref. 22. The type of the
junction affects the wave-vector-dependent transfer prob-
abilities but their magnetic field behavior remains qualita-
tively unchanged.

III. RESULTS AND DISCUSSION

We first briefly present the results obtained for an ideally
symmetric configuration �Sec. III A� to set the reference
point for the discussion of the transport for a defect present
in one of the arms of the ring �Sec. III B�.

A. Clean ring

In order to set the wave-vector dispersion parameter �k
close enough to the monoenergetic limit we studied the
transmission probability through an ideally symmetric ring
for B=0—see Fig. 2. In the small �k limit we notice that the
variation in T�q� becomes more pronounced and the depen-
dence distinctly saturates. The main features of the saturated
T�q� dependence are well resolved already for the �k=1.1
�10−3 /nm, the value which is used in the rest of the paper.
Below—unless explicitly stated otherwise—we also assume
q=0.037 /nm as the average wave vector—the value which
corresponds to a maximum of T�q� and w=79.2 nm. The
kinetic energy of progressive motion equals �2q2 /2m�

=0.77 meV and the assumed dispersion of the wave
vector covers the energy window ��2�q−�k�2 /2m� ,
�2�q+�k�2 /2m��= �0.73,0.82� meV. The second subband is
by ��0=2.9 meV above the lowest one—far above the elec-
tron kinetic energy—which is consistent with the neglect of
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FIG. 2. �Color online� Electron transfer probability to the left Tl

and right Tr leads for B=0 in function of the average wave vector q
for a number of �k values for w=79.2 nm.
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the scattering to higher subbands assumed in the present ap-
proach.

The effect of the magnetic field on the wave-vector-
resolved transfer probability through the symmetric ring is
illustrated in Fig. 3. We notice that the external magnetic
field introduces asymmetry of the transfer to the left and
right output leads. For B�0, Tl increases at the expense of
the Tr, which is a direct consequence of the magnetic forces
which preferentially inject the electron to the left arm of the
ring and then eject it to the left output lead. For higher mag-
netic fields Tl and Tr become less strongly dependent on q.

The dependence of the transfer probability on B is shown
in Fig. 4�a�. The transmission probabilities Tl, Tr as well as
their sum T undergo oscillations that are due to the
Aharonov-Bohm effect. The period of the oscillations of T is
equal to 0.055 T, in agreement with the nominal value of the
magnetic field, which corresponds to the flux quantum 	0
=e /h for the ring of radius 155 nm. The distinct decrease in
the oscillations amplitude for larger B is another conse-
quence of the magnetic forces. For higher fields most of the
electron packet is injected into one of the arms of the ring,
which subsequently introduces an imbalance in the parts of
the packet that meet and interfere near the output leads. In
consequence the Aharonov-Bohm interference is less pro-
nounced.

In order to demonstrate the effect of the channel width we
presented in Figs. 4�b� and 4�c� the transfer probabilities for
wider channels, namely, for �b� w=90.5 nm and �c� w
=113.13 nm �in Fig. 4 and everywhere else in this paper we
assume w=79.2 nm�. The strength of the magnetic deflec-
tion of the electron trajectories depends on the ratio of the
Larmor radius to the channel width—for wider channels
there is more space for the magnetic deflection and conse-
quently the Aharonov-Bohm oscillations vanish faster for
larger w.

In Fig. 3 we also notice that even for the symmetric ring
the extrema of Tl and Tr are shifted off B=0 �in other words
�Tl/r

�B 
B=0�0� only the sum of the transmission probabilities
T�B�=Tl�B�+Tr�B� is an even function of B. For the sym-
metric ring one has

Tl�B� = Tr�− B� , �7�

which suffices to explain the T�B�=T�−B� symmetry ob-
served in Fig. 3. However, for asymmetric rings relation �7�
no longer holds, although the transfer probability remains
symmetric in B—see below.

B. Ring with a defect

Before inserting the Gaussian defect to the ring we first
study its scattering properties for a straight channel. Figure 5
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FIG. 3. �Color online� Electron transfer probability to the left Tl

and right Tr lead for B=0, 0.3, and 0.6 T in function of the average
wave vector q for �k=1.1�10−3 /nm.
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FIG. 4. �Color online� Electron transfer probability to the left Tl
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for pure ring and channels of width �a� w=79.2 nm, �b� w
=90.5 nm, and �c� w=113.13 nm.
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shows the transmission probability as a function of the height
of the defect W for the average wave vector q=0.037 /nm.
For the attractive defect �W
0� the transmission probability
is close to 1 and the defect acts like a phase shifter. For W
�0 the defect is a more effective scatterer with transmission
probability as low as 0.08% for W=5 meV.

Next, we place a defect of height W=3 meV in the left
arm of the ring between the input and the left output lead—
see the red circle in Fig. 6, which also shows the amplitude
of the electron wave function for B= �0.6 T for several
moments in time. For the negative B most of the electron
wave function is injected to the right arm and next to the
right output lead, as for a pure quantum ring. The dominant
trajectory for this field is drawn schematically in Fig. 7�a�.
More complex is the transport for the positive magnetic field
�the lower panel of Figs. 6 and 7�b��: the electron is first
injected into the left arm, then it is nearly completely re-
flected by the defect. The electron velocity is inverted and
the Lorentz force—still tending to deflect the trajectory to
the left—keeps the electron within the ring as it passes near

the input lead and then both output leads. The electron is
subsequently reflected again from the defect, this time from
its other side. Only after the second scattering event the mag-
netic force pushes the electron to the left output ring. In
consequence most of the probability density goes to the left
output lead just like for the pure ring. In consistence with the
schematic of the dominant trajectory of Fig. 7�b�, in Fig. 6
for B=0.6 T we first observe an increased probability am-
plitude below the defect �48.6, 54, and 64.8 ps� and then
above it �75.7 and 86.5 ps�.

Figure 8 shows the parts of the electron packet within the
ring and in the leads calculated for the simulation presented
in Fig. 6. For the positive magnetic field the electron trajec-
tory has a larger length �Fig. 7�b�� and the electron packet
stays longer within the ring. In the large t limit we see in Fig.
8 that relation �7� no longer holds. However, the part of the
electron packet in the input lead �the incoming and backscat-
tered parts of the packet� is for any t exactly the same for
both magnetic field orientations. The independence of the
backscattering of the magnetic field orientation can be under-
stood as due to the fact that the backscattered trajectories are
identical for �B.17 As a result of this invariance, the relation
T�B�=T�−B� holds in spite of the very different kinetics of
the electron transfer through the asymmetric ring for B
= �0.6 T.

The oscillations of the transfer probabilities in function of
B are plotted in Fig. 9 for ��a�–�d�� attractive and ��e�–�h��
repulsive defects of different height/depth. The results can be
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compared with the ones given for the pure ring in Fig. 4�a�
and the parameters considered in Figs. 6–8 are applied in
Fig. 9�g�. The presence of the attractive defect, which �only�
shifts the phase of the part of the wave function passing
through the left arm, changes the local maximum of T for
B=0 �Figs. 4�a� and 9�d�� into a local minimum �Figs. 9�b�
and 9�c��. However, the average values of Tl and Tr within
the range of small magnetic fields B� �−0.2,0.2 T� remain
very similar. On the contrary, the repulsive defect �Figs.
4�e�–4�h�� leads to a pronounced difference in Tl and Tr val-
ues for B�0. Moreover, since the circulation of the electron
around the ring is stopped by the repulsive defect �see Fig.
6�, its presence drastically reduces the amplitude of the
Aharonov-Bohm oscillations.

The results of Fig. 9�b� are in a good agreement with the
experimental results for conductance given in Fig. 1 of Ref.

8 within the range of the magnetic fields presented therein:
�i� the amplitude of the oscillation is small, �ii� for low mag-
netic fields Tr distinctly exceeds Tl, �iii� Tl dominates for B
�0 and Tr for B
0, �iv� the oscillations of the transfer
probabilities vanish at higher magnetic field, �v� the overall
transfer probability T stays symmetric in B, and �vi� the en-
velope of the T oscillations possesses a pronounced mini-
mum near B=0.

In order to establish which of the above features are in-
dependent of the wave vector we plotted in Fig. 10 the trans-
fer probabilities for B=0 in function of q for fixed value of
the height of the defect W=3 meV and in Fig. 11 the trans-
fer probabilities in function of the magnetic field for several
fixed values of q. In Fig. 10 we see that the defect present in
the left arm of the ring does not necessarily imply Tl
Tr for
B=0. Results of Figs. 11�a� and 11�d� were calculated for
local maxima of Tl. The crossings between Tl and Tr appears
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FIG. 9. �Color online� Electron transfer probability to the left Tl and right Tr leads and their sum �shifted up for clarity by 0.2� for the
defect height �a� W=−10, �b� −5, �c� −3, �d� −1, �e� 10, �f� 5, �g� 3, and �h� 1 meV.
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FIG. 10. �Color online� Electron transfer probability to the left
Tl and right Tr leads for the ring with a repulsive defect of height 3
meV and B=0 in function of the wave vector q.
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here for the negative magnetic field instead of the positive B
as in Figs. 9�e�–9�g�. The overall transfer probability has a
maximum near B=0 for q=0.032 /nm and for q=0.048 /nm
the value of T oscillates around an average constant value.
For q=0.042 /nm �Fig. 11�c��—near the minimum of T�q�
�Fig. 10� Tl and Tr have similar values on a longer range of
B between 0 and 0.2 T. The presented results indicate that of
the above list of features only �i�, �iii�, and �v� are character-
istic to the ring with a strong scattering repulsive defect and
the rest is q dependent. The Fermi wave vector in the experi-
mental samples is determined by the density of the two-
dimensional electron gas in the electron reservoirs. In prin-
ciple the electron density is fixed at the sample formation
stage by the dopants concentration within the AlGaAs barrier
but the wave vector should be at least to an extent tunable by
the voltages applied to the electrodes in a gated sample.

In order to comment on the location of the defect that we
consider here, we indicate that a defect in between the input
and the right output LEADS produces the SAME transition
spectra ONLY with inverted value of the magnetic field �B
→−B� and a defect placed exactly in the center of the arm
between the output leads produces symmetric spectra only
with oscillation amplitude that is reduced for W�0. For B
=0 the exact position of the defect within the same section of
the ring influences the position of the transfer probability
peaks on the wave-vector scale but otherwise no qualitative
difference is found in the transfer characteristics as a func-
tion of the external magnetic field.

IV. SUMMARY AND CONCLUSIONS

We have studied the electron transport through a three-
terminal quantum ring containing an elastic scatterer using a
time-dependent approach. The presented study indicates that
elastic scattering may be a significant reason of the low am-
plitude of Aharonov-Bohm oscillations simultaneously ex-
plaining the low-field asymmetry of the conductance to both
the output leads as observed in a recent experiment. Low
visibility of the oscillations introduced by the elastic scatter-
ing is not due to the phase randomization but to a hindered
circulation of the electron around the ring. Both decoherence
and intersubband scatterings22 that were neglected in the pre-
sented study should also reduce the visibility of the
Aharonov-Bohm oscillations but by themselves they cannot
introduce the strong asymmetry effects that are distinct in the
experimental results. We also found that the potential defect
present within the ring affects the properties of the transmis-
sion probability only in the low magnetic field. The high
magnetic field limit is left unchanged: the Aharonov-Bohm
oscillations are reduced by the electron injection imbalance
due to the magnetic forces and the conductance of one of the
leads increases at the expense of the other as in the case of a
clean quantum ring.
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